Derivatives


  About this tool:

You can use this tool to find the derivative of a mathematical expression.


Click here to learn what a derivative is.


What is a derivative?

The derivative of a function \( f(x) \) when \( x = a \), written \( f'(a) \), is the instantaneous rate of change of the function at this point. In other words, it is the change in \( f \) in an interval \( h \) as the interval approaches 0 (becomes smaller and smaller). The derivative of a function at a point tells us the rate at which the value of the function is changing at that point.

$$ f'(a) = \lim_{h \to 0} = \frac{f(a+h)-f(a)}{h} $$

For any function \( f \) , we define the derivative function, \( f' \), by:

$$ f'(x) = \lim_{h \to 0} = \frac{f(x+h)-f(x)}{h} $$

We can also visualize the derivative \( f'(a) \) as the slope of the graph of the function \( f \) at \( x = a \). As the interval \( h \) becomes smaller, the slope of the graph approaches the slope of the tangent line to the curve at point \( a \).

Click here to show/hide a table of derivatives of common mathematical functions.





Derivative of a constant
$$ \frac{d}{dx}(c) = 0 $$
Derivative of power functions ("the power rule")
$$ \frac{d}{dx} (x^n) = nx^{n-1} $$
Derivative of the natural exponential function
$$ \frac{d}{dx} (e^x)= e^x $$
Derivative of the product of two functions
$$ \frac{d}{dx} [f(x)g(x)] = f(x) \frac{d}{dx} [g(x)] + g(x) \frac{d}{dx} [f(x)]$$
Derivative of the quotient of two functions
$$ \frac{d}{dx} \frac{f(x)}{g(x)} = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2} $$
Derivative of the product of a constant and a function
$$ \frac{d}{dx} (cf(x)) = c \frac{d}{dx} f(x)$$
Derivative of a sum of functions
$$ \frac{d}{dx} (f(x) + g(x)) = \frac{d}{dx} f(x) + \frac{d}{dx} g(x)$$
Derivative of a difference of functions
$$ \frac{d}{dx} (f(x) - g(x)) = \frac{d}{dx} f(x) - \frac{d}{dx} g(x)$$

Derivatives of trigonometric functions

$$ \frac{d}{dx} (\sin x)= \cos x $$ $$ \frac{d}{dx} (\cos x)= - \sin x $$ $$ \frac{d}{dx} (\tan x)= \sec^2x $$ $$ \frac{d}{dx} (\csc x)= - \csc x \cot x $$ $$ \frac{d}{dx} (\sec x)= \sec x \tan x $$ $$ \frac{d}{dx} (\cot x)= - \csc^2x $$

Derivatives of inverse trigonometric functions

$$ \frac{d}{dx} (\sin^{-1}x)= \frac{1}{\sqrt{1 - x^2}} $$ $$ \frac{d}{dx} (\cos^{-1}x)= - \frac{1}{\sqrt{1 - x^2}} $$ $$ \frac{d}{dx} (\tan^{-1}x)= \frac{1}{1 + x^2} $$ $$ \frac{d}{dx} (\csc^{-1}x)= - \frac{1}{x\sqrt{x^2 - 1}} $$ $$ \frac{d}{dx} (\sec^{-1}x)= \frac{1}{x\sqrt{x^2 - 1}} $$ $$ \frac{d}{dx} (\cot^{-1}x)= - \frac{1}{1 + x^2} $$

The chain rule

If y = f(u) and u = g(x):

$$ \frac{dy}{dx} = \frac{dy}{dx} \frac{dy}{dx} $$

Derivatives of logarithmic functions

$$ \frac{d}{dx} (log_b(x))= \frac{1}{x \ln b} $$ $$ \frac{d}{dx} (\ln x) = \frac{1}{x} $$ $$ \frac{d}{dx} (\ln[g(x)])= \frac{\frac{d}{dx}[g(x)]}{g(x)} $$

Derivatives of hyperbolic functions

$$ \frac{d}{dx} (\sinh x) = \cosh x $$ $$ \frac{d}{dx} (\cosh x) = \sinh x $$ $$ \frac{d}{dx} (\tanh x) = \operatorname{sech}^2 x $$ $$ \frac{d}{dx} (\operatorname{csch} x) = - \operatorname{csch} x \coth x $$ $$ \frac{d}{dx} (\operatorname{sech} x) = - \operatorname{sech} x \tanh x $$ $$ \frac{d}{dx} (\coth x) = - \operatorname{csch}^2 x $$

Derivatives of inverse hyperbolic functions

$$ \frac{d}{dx} (\sinh^{-1}x)= \frac{1}{\sqrt{1 + x^2}} $$ $$ \frac{d}{dx} (\cosh^{-1}x= \frac{1}{\sqrt{x^2 - 1}} $$ $$ \frac{d}{dx} (\tanh^{-1}x= \frac{1}{1 - x^2} $$ $$ \frac{d}{dx} (\operatorname{csch}^{-1}x= - \frac{1}{|x|\sqrt{x^2 + 1}} $$ $$ \frac{d}{dx} (\operatorname{sech}^{-1}x= - \frac{1}{x\sqrt{1 - x^2}} $$ $$ \frac{d}{dx} (\coth^{-1}x= \frac{1}{1 - x^2} $$

  How to use this tool:

Write the mathematical function whose derivative you want to calculate in the textbox.

Write the variable with respect to which the derivative will be calculated. Use either x, y, z or t only.

DO NOT include the \( \frac{d}{dx} \) term.

Click "Calculate derivative!"



  Examples of valid input functions:

To input    \( x^3 + x^2 + x \)   write   x^3 + x^2 + x

To input    \( \frac{1}{x} \)   write   1/x

To input    \( \ln(x) \)   write   ln(x)

To input    \( \log_{10}(x) \)   write   log(x, 10)

To input    \( e^x \)    write    exp(x) or e^(x)

To input    \( \sin x \)    write    sin(x)

To input    \( \sin^{-1}x \)    write    asin(x)

To input    \( \sinh x \)    write    sinh(x)



Derivative Calculator

Write the expression whose derivative you want to calculate:

Expression:  

Variable: